
Conjoined Events

Neil C. C. BROWN
School of Computing

University of Kent
UK

neil@twistedsquare.com

Abstract
Many existing synchronous message-passing systems support
choice: engaging in one event XOR another. This paper intro-
duces the AND operator that allows a process to engage in multiple
events together (one AND one more AND another; all conjoined),
engaging in each event only if it can atomically engage in all the
conjoined events. We demonstrate using several examples that this
operator supports new, more flexible models of programming. We
show that the AND operator allows the behaviour of processes to
be expressed in local rules rather than system-wide constructs. We
give an optimised implementation of the AND operator and explore
the performance effect on standard communications of supporting
this new operator.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms

Keywords Multiway synchronisations, Choice, Conjoined Events

1. Introduction
Messages can be passed between concurrent processes either syn-
chronously or asynchronously. Asynchronous systems allow a pro-
cess to send a message and proceed without waiting for the re-
ceiver to accept the message, and thus necessarily involves the
use of buffering. Synchronous systems require that the sender wait
and synchronise with the receiver (and therefore no buffering is
required). For basic communication, both asynchronous and syn-
chronous systems can easily emulate the other (by sending ac-
knowledgements, or introducing a buffering process, respectively).

Synchronous message-passing allows processes to interact in
two senses: they pass data, and they establish a common point in
time. Both pieces of information can be exploited in a system’s
design. Examples of synchronous systems include Concurrent ML
[9] and all CSP-based [8, 10] systems (e.g. Go [1], occam-π [12],
CHP [2]).

Many synchronous systems include a choice operator; processes
are able to offer to engage in exactly one of a choice of communica-
tions. This operator facilitates the use of more powerful design pat-
terns [2, 11]. The choice operator can be thought of as an “XOR”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AMP ’10 June 6, Toronto, Canada
Copyright c© 2010 ACM [to be supplied]. . . $10.00

(exclusive-or) operator, allowing processes to synchronise on one
event or another (but not both).

This paper introduces an “AND” operator for message-passing
systems, that allows a process to engage in one event AND another
(we call this conjoining the events). This is different from perform-
ing the two events in sequence or parallel: both events must hap-
pen, or neither. They are dynamically (and temporarily) fused into
behaving like a single event. This enables the use of new design
patterns.

In section 2 we explore uses of this new operator, and in section
3 we explore some of its properties. In section 4 we explain an algo-
rithm for its implementation, built on top of Software Transactional
Memory (STM), and in section 5 we benchmark this implementa-
tion against comparable message-passing systems to examine the
cost of supporting conjunction.

2. Examples
To motivate the implementation of this new conjunction feature, we
give several examples here of how it can be used.

2.1 Moving Agents
Consider a topology of sites – say, a one-dimensional line of sites
– with a pair of communication channels (one in each direction)
connecting adjacent sites. Each site may either be empty or contain
a single agent. Each agent may move to an adjacent site within a
time-step.

One way to implement this is to make the site behave as follows
in each time-step:

• if it is empty, it offers an exclusive choice between receiving an
agent from each adjacent site, whereas

• if it is full, it offers an exclusive choice between sending its
agent on an outward channel (to any of the sites to which the
agent is willing to move).

This simple implementation has two problems in the case where
a site is full. Firstly, it prohibits an agent moving into a site on
the same time-step as an agent moves out (the “slow” problem);
this may not be a property we want. Secondly, if two sites adjacent
to each other both try to send an agent to each other, neither will
progress (the “blocking” problem). In a one-dimensional line of
sites, the blocking problem is particularly problematic and can
easily lead to deadlock.

An erroneous correction to this implementation would be to
offer (when the site is full) to send the agent out in parallel with
offering to receive a new agent. This could result in receiving a
new agent without sending on the old agent; this would leave two
agents in a site, breaking our design.

A correct solution involves the use of conjunction. When a site
is full and has an agent wanting to move left, it offers to either:



(send the agent left) or (send the agent left and receive a new agent
from the left). This way, if the site to the left is empty, the agent
will be sent. If the site to the left is full and its agent wants to move
right into our site, the agents are swapped. This solves our blocking
problem. If we also want to solve the slow problem, we offer to
either: (send the agent left) or (send the agent left and receive a
new agent from the left) or (send the agent left and receive a new
agent from the right). This solution generalises to any number of
adjacency connections (and thus to any topology, such as two- and
three-dimensional regular grids). It allows the problem to be solved
using a different local design rather than a system-wide solution
involving extra events.

2.2 Platelet Pipeline
We consider a problem similar to that posed by Schneider et
al. [11]. Platelets move (in a consistent direction) along a one-
dimensional pipeline. On each time-step a platelet may move or
not move, with the following rule: if there are platelets immedi-
ately before or immediately after it in the pipeline, it will only
move forwards if they do so too. We also add the feature that each
platelet will refuse to move on a time-step with probability p (typi-
cally 5%).

The CSP algorithm [11] requires knowledge of the platelets
from more than the adjacent sites, and multiway synchronisations;
a later solution in the occam-π language used a higher-level clot
process to group together the movement decisions of adjacent
platelets [13]. We can use conjunction to implement a solution
wherein each platelet only requires (two-party) synchronisations
with its immediate neighbours, and an optional global synchroni-
sation.

2.2.1 Ticking
One methodology for designing concurrent simulations is the tick
pattern; in each time-step, each process offers the choice between
some actions, and a lower-priority tick event. If the actions are
chosen, a further choice is offered between any remaining actions
and the tick event (and so on). All the actions that can occur, will
– followed by the tick event that signifies the end of this time-step
(and thus the beginning of the next).

In our platelet simulation, each site may communicate two dif-
ferent things to each neighbour: a platelet (signalling a move) or an
empty signal. An empty site begins by offering:

• to read a signal from the site behind it in the pipeline, or
• to send an empty signal to the site ahead of it, or
• to synchronise on the tick event.

If either of the former two happens, the remaining two of three
are offered again, and so on, so that the process may do the first
none or once, the second none or once, until the third happens –
at which point it becomes full if it read a platelet from the site
behind it (i.e. if it did perform the first event), and remains empty
otherwise.

A full site generates a random probability for the time-step; with
a 5% chance it simply waits for the tick event. In the other 95% of
cases it offers a choice:

• to read a signal from the site behind it in the pipeline and send
the current platelet forward in the pipeline, or

• to synchronise on the tick event.

If the former happens, the process subsequently commits to the
latter. Once the tick event has happened, the process is empty if
it read an empty signal from the site behind it, and remains full
otherwise.

The pipeline can be terminated with a site that repeatedly reads
in any signal, and started with a site that offers signals according to
some pattern of platelet generation.

From these simple rules for behaviour we get emergent clotting
behaviour; no site that is full can move unless its neighbours are
empty (and thus willing to engage in events with it) or are full
and willing to move – but not if they are unwilling to move. This
becomes transitive; no clot (contiguous group of full sites) can
move unless all are willing to move. This would not be possible
so simply (and with entirely local rules such as these) without
conjunction.

It is also possible to construct a solution that does not use a tick
event, nor priority [3]. This is done by introducing two more events
between processes beyond empty and move: a can-stay event and a
must-stay event.

Implementing this system with a concurrent process per site
may be inefficient due to the large number of synchronisations that
would be required. It is possible to instead construct a hybrid ap-
proach that simulates a group of many contiguous sites sequen-
tially, and uses the above design/protocol at the edges of each group
to communicate between the concurrent processes that simulate en-
tire groups of sites.

2.3 Hidden Process
Conjunction can also be useful in other situations, to “hide” pro-
cesses. When two processes communicate with each other, they
also synchronise. Placing a process in the middle of the two that
forwards the messages introduces buffering, which may be un-
wanted. An added problem is that if the buffer process offers to
read in a value, it is continually available – whereas the original
receiver may not be, thus altering the synchronisation behaviour; if
the writer only intends to write when the reader is available (and
choose something else otherwise), its choice will be affected.

The solution to this problem of “hiding” a process is surpris-
ingly complicated, and involves the use of conjunction and another
feature: extended communications. An extended communication
involves making the second party in a communication wait while
the first performs an action. An extended write means that once
both parties have agreed to synchronise, the writer performs an ac-
tion before sending the value (typically, something that involves
calculating the value). An extended read means that once the data
has been passed, the reader can perform an additional action (typi-
cally a synchronisation) before the writer is freed. The other party
in an extended transaction does not need to know (at the program
level) that the other party has performed an extended communica-
tion, and both sides may extend the communication.

A process may be hidden as follows. It creates an internal
communication channel. It then performs the conjunction of an
extended input on its external input channel, and an extended output
on its external output channel. This means that it maintains the
synchronisation behaviour, because it fuses together its input and
output; they behave as if they were the same event (i.e. as if the
process was not present at all).

During the extended input phase of the input (i.e. while the out-
side writer is waiting), the value read from the external input is sent
on the internal communication channel. During the extended out-
put phase of the output (i.e. while the outside reader is waiting for a
value), the value is read from the internal communication channel,
and is used as the value for the external outward communication.
Thus, the value received is passed across and communicated on the
next channel. This implements a hidden identity process that does
not modify the value; any processing on the value should take place
during one of these two extended phases, or by having a more com-
plex internal structure than a simple forwarding channel.



b
a
rr
ie
rP
ro
c
e
s
s

Figure 1. The duality between N processes enrolled on an N -
party event (left), andN processes synchronising on 2-party events
with a single “barrier process” that synchronises on the conjunction
of all of them (right).

2.4 Event Duality
In addition to two-party synchronisations (as channel communica-
tions often are), many frameworks also support N -party synchro-
nisations. There is a duality between N processes synchronising
on one item together, and N processes each synchronising on a
2-party event with a further process that conjoins them all (this is
illustrated in figure 1). This means that any system with only two-
party synchronisations and conjunction can emulate N -party syn-
chronisations.

Furthermore, it is possible to form a similar correspondence for
partial events. Partial events are events where any X processes of
N may synchronise together (where X < N ; if X = N this is
a full event). To implement a partial event, the extra process must
offer a choice between all subsets of size X of the N two-party
events that it has been given. It is possible to further constrain the
subsets to treat certain parties differently (e.g. the process could
offer to synchronise with one of two special master processes and
any three of ten worker processes).

These correspondences are useful in theory, and can be useful
for thinking about expressive power; however, it is likely that the
systems involving conjunctions of two-party events will be slower
than implementing the full or partial events directly.

A hybrid approach is interesting – consider 201 processes want-
ing to synchronise on a barrier together. They could all enroll on
one barrier and synchronise together – all 201 would contend for
the same barrier. Consider instead two barriers – 100 processes
would solely enroll on barrier and 100 solely on the other. One
process would enroll on both and would conjoin the two. This has
the same behaviour as the original barrier that was twice as large
as these two new barriers, but (using the implementation described
in this paper) the participants would contend on only their one bar-
rier until it was ready, and only then would they examine the other
barrier. Thus conjunction could be used to reduce the contention on
large barriers.

3. Properties, Terminology and Notation
We use a notation borrowed from boolean logic, with a⊕bmeaning
that a process waits for either a or b but will only perform one of
them, and a ∧ b means that a process waits for both a and b. The
operators are associative and commutative. The unit of ⊕ is the
never-ready event STOP, and the unit of∧ is the always-ready event
SKIP. Conversely, STOP is a zero of ∧.

a b c a ∧ (b⊕ c) (a ∧ b)⊕ (a ∧ c)
7 7 7 None None
7 7 X None None
7 X 7 None None
7 X X None None
X 7 7 None None
X 7 X {a, c} {a, c}
X X 7 {a, b} {a, b}
X X X {a, b} or {a, c} {a, b} or {a, c}

Figure 2. The event table showing the equivalence a ∧ (b ⊕ c) ≡
(a ∧ b) ⊕ (a ∧ c). The event table is akin to a boolean logic truth
table; each event is either ready (indicated by X) or not ready
(indicated by 7), and the possible resolutions (sets of events that
could complete together) are indicated for each compound choice.

a b c a⊕ (b ∧ c) (a⊕ b) ∧ (a⊕ c)
7 7 7 None None
7 7 X None None
7 X 7 None None
7 X X {b, c} {b, c}
X 7 7 {a} {a}
X 7 X {a} {a} or {a, c}
X X 7 {a} {a} or {a, b}
X X X {a} or {b, c} {a} or {a, b} or {a, c} or {b, c}

Figure 3. The event table showing that a⊕ (b∧ c) will not behave
the same as (a ⊕ b) ∧ (a ⊕ c). It can be seen that the right-
hand formula admits more possible resolutions than the left-hand
formula.

Conjunction does distribute over choice: a∧(b⊕c) ≡ (a∧b)⊕
(a ∧ c), as demonstrated in the event table in figure 2. However,
choice does not distribute over conjunction: a ⊕ (b ∧ c) will not
behave the same as (a⊕ b)∧ (a⊕ c). The difference is revealed in
the event table in figure 3; alternatively one could say that the given
semantics of the latter are indeterminate.

Our algorithms deal with a choice normal form (a choice of
conjunctions). Due to the distributivity properties, it is easier to
transform complex offers into this choice normal form than it
would be into, say, conjunctive normal form (a conjunction of
choices).

We define a synchronisation event as being a concurrency prim-
itive that has a persistent membership count of processes that can
dynamically be increased (by enrolling) or decreased (by resign-
ing). An event with membership count N can only complete when
all N members agree to synchronise on the event. Events with a
static count are a special case of those with a dynamic count.

Each offer can be a single event or a conjunction of several
events; we choose to represent an offer as a set of events, where
multiple events indicate a conjunction, a singleton set is the con-
tained single event, and the empty set is not permitted.

A process can make multiple offers, forming an offer-set, but
will only complete exactly one of those offers. If one or more
offers can complete immediately, an arbitrary choice will be made
between them (see section 4.6 for discussion of priority). If no
offers can currently complete, the new process must wait until
another process later resolves the offers. We can envisage offer-
sets, offers and events as a tripartite graph (see figure 4).

A resolution is a collection of offers (each from a distinct offer-
set) such that each event that appears in any offer appears in exactly
as many offers as it has enrollees.



Offer-Sets Offers Events

p

q

r

p0

p1

p2

q0

r1

r0

a

b

c

d

e

Figure 4. Tripartite graph of offer-sets (left), offers (middle) and
events (right). The direction of the arrows indicates the direction
of references in the system, and also the direction that the search
follows. The line styles are for visual clarity and have no special
meaning. Each offer is always referenced by exactly one offer-set.
Events reference an offer-set if and only if the offer-set contains an
offer featuring that event. Multiple edges between the same nodes
are not permitted anywhere in the graph.

4. Algorithm
The algorithm for implementing conjunctive choice is at its heart a
search for a solution to a constraint satisfaction problem. We have
a collection of offer-sets and we need to search for a solution (a
resolution) that satisfies some of the constraints. We can make use
of specific knowledge about the problem to tailor an algorithm. We
also have the interesting characteristic that investigating each new
event incurs a time penalty for accessing it. Therefore we ideally
want to locate a completion by accessing as few events as possible.
By far the most common case (and the one we want to optimise for)
is when each process offers one (or perhaps two to three) choices,
each of which is a single two-party channel communication.

We use Software Transactional Memory (STM) [7] to provide
atomicity in our algorithm, as this eases reasoning about the con-
current algorithm.

4.1 Basic Algorithm
One basic algorithm to find a resolution in the graph is as follows.
Begin with the latest added offer-set. At each offer-set, choose an
offer (this is a choice point). At each offer, visit all events. For each
event, decrement an associated temporary count (that begins at the
count of enrollees, if this is the first visit to the event). If the event
was not previously visited in the search history, visit all its offer-
sets that themselves have not been previously visited in the search

history. At the end, if any visited event has an associated count
that is not zero, back-track to the last choice-point (unwinding the
history to that point) and search a different offer. If no offers remain
unsearched at the last choice-point when back-tracking is required,
back-track to the choice-point before that (i.e. perform a depth-first
search).

In this algorithm, each visit to an event must come from a
different offer-set (via some offer) because each offer-set is only
traversed once, and each event can only appear in an offer once.

4.2 Actual Algorithm
The basic algorithm described above is inefficient; we may only
notice that a search path is uncompletable quite late on when we
discover that not enough processes have agreed to synchronise on
a particular event. We can optimise this by noting that we can tell
earlier if an event cannot complete: an event cannot complete if
any offer-set featuring that event (transitively, via an offer) chooses
an offer that does not feature that event. (For example, in the offer
a ⊕ (b ∧ c) ⊕ (a ∧ c), choosing the offer b ∧ c prevents a from
completing.) We can go so far as to prevent the offer-set choosing
an event for which we are currently searching for a completion.

Our search begins with the SEARCH-NEW-OFFER-SET function,
shown in figure 5. Via the SEARCH-OFFER-SET function, this tries
each offer in the offer-set until one completes without backtracking.

The function for searching each offer, SEARCH-OFFER, is
shown in figure 6. First, the events are all checked (lines 2–4),
which affects the work queue. Once all the events have been
checked, this work queue is examined using the PROCESS-WORK
function. If the work queue is empty, a result can be returned based
on all the offer-sets that have been visited in the search. If it is
not empty, the next item from the work queue is processed using
search-offer-set (with new set to false).

The final function is CHECK-EVENT, shown in figure 7. This
begins by reading the current status of the event (line 1). An event is
potentially ready to complete if it has as many offerers as enrollees,
or it is part of the newly offered events and has one less offerers
than enrollees. We use this knowledge to cut short our search and
backtrack if neither of these conditions is met (lines 2 and 18).

We then consider all the offer-sets associated with the event (bar
the one we are currently processing, which we know has chosen this
event; line 3):

• If there are none to consider, the work queue is returned un-
changed (line 5).

• If any have been previously visited, we backtrack (line 7). This
relies on the knowledge that each event is only processed once,
and the knowledge that each offer has all its events processed
before a further offer-set is searched; so if we are processing
this event, and one of the offer-sets has already been visited, it
must not have chosen this event – which will prevent this event
from ever completing and thus we backtrack.

• In the other case, the new work queue is formed from three
groups (lines 9–15):

1. unrelated: all the offer-sets in the work queue that are not
featured in this event;

2. new: all the offer-sets in the event not already in the work
queue, filtered; and

3. filtered-old: all the offer-sets in the event already in the work
queue, filtered further.

The FILTER function removes all the offers not featuring the
event (as choosing any offers later in the search that do not fea-
ture this event would be a fruitless path). If this leaves no offers
remaining, we can backtrack straight away as this will only lead to



SEARCH-NEW-OFFER-SET(offer-set)
(1) search-offer-set(true, offer-set, offers(offer-set), {}, {})

SEARCH-OFFER-SET(new, offer-set, offers, done, work)
(1) case offers of
(2) []:backtrack
(3) [o:os]:search-offer(new, offer-set, o, done, work) ∨ search-

offer-set(new, offer-set, os, done, work)
(4) end case
Figure 5. The algorithms for searching an offer-set. search-offer-
set tries the offer at the head of the list; if this backtracks, the rest of
the list is processed. If the end of the list is reached, the algorithm
backtracks further.

SEARCH-OFFER(new, offer-set, offer, done, work)
(1) case offer of
(2) {e} ∪ es:
(3) work-mod← check-event(new, offer-set, e, done, work)
(4) search-offer(new, offer-set, es, done, work-mod)
(5) {}:
(6) let done-mod = done ∪ {offer-set 7→ pristine(offer)}
(7) process-work(done-mod, work)
(8) end case

PROCESS-WORK(done, work)
(1) case work of
(2) {}:return done
(3) {(offer-set 7→ offers)} ∪ work-rest:
(4) search-offer-set(false, offer-set, offers, done, work-rest)
(5) end case
Figure 6. The algorithm for searching an offer. The full list of
events is checked using check-event, and once all have been pro-
cessed the not-visited map is examined; if there are no further offer-
sets to visit, a result is returned based on the visited map (including
the pristine version of the current offer) – otherwise the next unvis-
ited offer-set is searched.

backtracking later when we come to process the empty offer-set in
SEARCH-OFFER-SET (figure 5, line 2). We then remove the event
from all the remaining offers so that we do not process any event
twice.

If, after all of this search process, we are unable to find a resolu-
tion (i.e. we end up backtracking until we can backtrack no further),
we instead record our new offer-set in all the events contained in
that offer-set (transitively via offers) and then block on some private
synchronisation object that is recorded with the offer-set. When a
resolution is found, this synchronisation object will be triggered
for all offer-sets involved in the resolution. Thus, this algorithm in-
volves no polling or busy-waiting. Each process performs a single
transaction featuring the above algorithm and then either blocks or
has successfully found a resolution and proceeds.

4.2.1 Worked Example
We can explain a short example using figure 4. We will consider
the case where p and r have already been offered, and q is the latest
offer-set. The enrollment counts are: a-2, b-1, c-3, d-2 and e-2.

The newest offer-set is q, and thus this is passed to SEARCH-
NEW-OFFER-SET. An offer is picked by SEARCH-OFFER-SET (q0)
and SEARCH-OFFER calls CHECK-EVENT on all the events ({c}).
The length of the offer-sets in c is two (q is a new offer-set, so will
not have been recorded, only p and r) against its enrollment count
of three, and “offer-set-new” is true, so the block starting on line
3 of CHECK-EVENT will be entered. The “other-offer-sets” binding

CHECK-EVENT(offer-set-new, offer-set, event, done, work)
(1) (enrolled-count, offer-set-list)← read event
(2) if (enrolled-count = length(offer-set-list) or (enrolled-count =

length(offer-set-list) + 1 and offer-set-new)
(3) let other-offer-sets = offer-set-list \ {offer-set}
(4) if other-offer-sets = {}
(5) return work
(6) else if other-offer-sets ∩ done 6= {}
(7) backtrack
(8) else
(9) let unrelated = work \ other-offer-sets
(10) let new = {offer-set 7→ filter(event, offers)
(11) | offer-set 7→ offers ∈ other-offer-sets \ work}
(12) let filtered-old = {offer-set 7→ filter(event, offers)
(13) | offer-set 7→ offers ∈ work,
(14) offer-set ∈ keys(other-offer-sets)}
(15) return unrelated ∪ new ∪ filtered-old
(16) end if
(17) else
(18) backtrack
(19) end if

FILTER(event, offers)
(1) if [] = [offer | offer ∈ offers, event ∈ offer]
(2) backtrack
(3) else
(4) return [offer \ event | offer ∈ offers, event ∈ offer]
(5) end if
Figure 7. The check-event function (and associated sub-function
filter). Note that the filter function can be implemented as a single
pass over each offer in offers. Similarly, the lines 9–15 in check-
event can be implemented in a single simultaneous pass over other-
offer-sets and not-visited.

will be {p, r} and “done” is empty, so lines 9–15 will be executed.
The “new”(-ly discovered) offer-sets, p and r, will be filtered down;
p′ will contain p′

1 = {b, d} and p′
2 = {}, while r′ will contain

r′
0 = {d}.

PROCESS-WORK will then be called with “done” being {q 7→
q0} and “work” being {p′, r′}. PROCESS-WORK will arbitrarily
pick an item from the work list – we will consider the case where
p′ is picked, and p′

2 is picked as the offer in SEARCH-OFFER-SET.
SEARCH-OFFER will then be called with the empty offer p′

2, and
will call PROCESS-WORK with “done” being {q 7→ q0, p 7→ p2},
and “work” being {r′}.

PROCESS-WORK will pick r′ from the work list and SEARCH-
OFFER will be called with r′

0. This will call CHECK-EVENT on the
event d. d has two offer-sets associated (p and r) and an enrollment
count of two, so can complete. The “other-offer-sets” binding will
be p, which is non-empty – but it does intersect with the keys in
“done”. This will trigger a backtrack. To see why, we should look
at figure 4. We are originally trying to complete offer q0, which
requires completing event c. To do so we need three offers; one
each from p, q and r. Now that we are attempting to complete offer
r0 we must complete event d. This requires two offers: one from
r (which is r0) and one from p, which must be p1 – but we have
already chosen p2 instead, so we have a contradiction (a dead-end
in our search).

We therefore backtrack, to the latest choice point in SEARCH-
OFFER-SET – but r′ only contained r′

0, so we backtrack one further
than that: to our choice of p′

2 from p. We instead choose p′
1, and

thus call CHECK-EVENT on d. The event can complete, and we
filter our work list (which is r′ that contains r′

0 = {d}) down to
r′′ that contains r′′

0 = {}. When we then pick r′′
0 from r′′, there is



nothing to be done, and our search is ultimately able to complete,
with the returned value of done being {q 7→ q0, p 7→ p1, r 7→ r0};
events b, c and d will complete.

4.3 Scalability
One way to implement this complicated choice algorithm would be
with a single central data structure with a lock. Each offering pro-
cess would acquire the lock, then search for completions and either
resolve successfully or record their choice and wait. The problem
with this approach would be that it would cause independent pro-
cesses in the system (one trying to complete event a, another trying
to complete event z) to contend for the lock.

The advantage of the algorithm described above, using Software
Transactional Memory, is that processes will only contend if they
share an event in their offers. Processes trying to complete event a
and event z will do so separately without causing any contention.
Thus the algorithm can be said to scale well as more cores are
added to the system; only connected processes will interact with
each other, and processes that are separate in this regard can all
executed simultaneously on many cores without issue.

4.4 Implementation without STM
It may be desired to implement this conjunction algorithm using
basic atomic operations. This can be done by translating our use of
STM through an implementation technique for STM [6] as follows.

When searching for a resolution, each read of an event is per-
formed using an atomic read of the pointer that caches the event
address and read-value in local storage. If the pointer is found to be
null, the read must be retried.

Regardless of the outcome of the whole algorithm, after the
search the algorithm will update the events (either to add our offer-
set to the event or to clear all of them). At this point the events
are claimed by performing an atomic swap (for null) on all the
events in ascending memory-address order. If any results are null,
the algorithm must retry the whole search (as another process must
be modifying the event). Once all events are claimed, the values
of the events must be compared against the cache. If all are equal,
the new values can be atomically written to the pointers. If any are
non-equal, the search must be retried (after the events are restored,
unmodified, with atomic writes).

4.5 Partial Events
A partial event is one where only X out of N enrolled processes
are required to complete the event (X < N ). When X 6= N , a
central assumption of our algorithm is broken. It is no longer the
case that when an offer-set features an event but does not choose
the offer containing that event, that event can no longer complete.
So the way the offers in the work queue are pruned cannot work the
same way. Additionally, our strategy that once an event is featured
in one offer it must feature in all other offers that might be chosen
is no longer valid.

Our existing pruning strategy can be formulated as the calcula-
tion that X participants are required for the event, and since there
are N enrolled processes and for full events X = N , when at least
one participant refuses to participate, the entire event cannot com-
plete. For partial events, this means that when at least N −X par-
ticipants refuse to participate, the event can no longer occur – and
in fact, if there are N ′ processes offering on the event (N ′ ≤ N ),
when at least N ′ − X participants refuse to participate, the event
can no longer occur. So we would need to keep a count associated
with each event of participants who had so far (on the search path)
refused to engage in the event; when this count exceeds N ′ − X ,
we would backtrack.

SEARCH-NEW-OFFER-SET-PRI(offer-set)
(1) offers-sorted ← sort-by(offers(offer-set), λoffer →

first(offer))
(2) search-offer-set(true, offer-set, offers-sorted, {}, {})
Figure 8. A slight modification to the SEARCH-NEW-OFFER-SET
algorithm shown in figure 5 to support limited priority. The offers
in the new offer-set are first sorted by an arbitrary event from the
event-set; typically the head of the list or root entry in a tree.

4.6 Priority
One important feature not yet discussed is priority. Priority is useful
when programming simulations: in particular to allow low-priority
events (see section 2.2.1 for an example). Our discrete-time sim-
ulations invariably have the following pattern: optionally perform
actions X and/or Y, until we synchronise on a global tick event
with all other agents in the simulation. It is important here that the
global tick is lower priority than the other actions. If it is not, non-
determinism can result because a process may tick rather than per-
forming an action (which all other participants also wanted to per-
form). The intention in the design is that tick should happen only
when nothing else can.

It is clear that local priorities are in general a poor solution: if
one process offers a or b preferring a, and a second offers a or
b preferring b, an event cannot be chosen that will satisfy both.
We instead consider global priorities, where each event possesses
an intrinsic constant priority. Without conjunction, this would be
a simple matter, semantically: when offering a or b and both are
ready, choose the event with the highest priority. With conjunction
it is less clear; given the choice of completing (a and b) or (c and
d), how should it be decided, given the priorities of a, b, c and d?

Note also that featuring priority makes the choice algorithm
less optimal; if the priority of a resolution is decided based on all
the events being completed, we must find all resolutions (which
involves examining potentially many more events than finding the
first resolution) and then calculate their priority before deciding
on one. This is easily implementable with a small change to our
current algorithm, but could have devastating consequences for the
performance.

An alternative, which would require an even smaller change
to the algorithm, is to guarantee that resolution A will be chosen
over resolution B if all events in A have a higher priority than
all of those in B: (∀a ∈ A.∀b ∈ B.a > b) =⇒ A > B.
In any other case, an arbitrary choice will be made. This can
then be implemented quite simply: by sorting the new offers by
the priority of an arbitrary event (the first in the set). This will
compare arbitrary events from the resolutions that would result
from successfully searching this offer; this gives consistent priority
if the above condition is satisfied. Note also that if no processes are
using conjunction, each resolution will contain a single event, and
thus this system is equivalent to global priorities on events without
conjunction. An accordingly modified version of the algorithm is
given in figure 8.

5. Benchmarks
Given that conjunction is a new feature, it is not possible to bench-
mark our implementation of conjunction against another. Instead,
we give indications of the cost of supporting conjunction for stan-
dard channel communications, as this is the primary negative effect
of adding conjunction to existing message-passing frameworks.

Currently, we have only implemented the conjunction algo-
rithm in our Haskell library CHP (Communicating Haskell Pro-
cesses) [2], due to Haskell’s good support for Software Transac-
tional Memory [7]. Therefore it seems appropriate to benchmark



System Mean 95% CI
MVar 0.7188 0.7069 – 0.7319
STM 1.0392 1.0215 – 1.0610
Sync 1.9387 1.9166 – 1.9635
CML 34.2610 34.1744 – 34.3670
CHP 4.1625 4.1345 – 4.1927

Table 1. Times (means and 95% confidence intervals) for 100
pairs of writer and reader processes, communicating 100000 times
(seconds, to 4 d.p.)

against other Haskell-based message-passing libraries. These in-
clude synchronous channel implementations based on Haskell’s
MVars and STM itself, Concurrent ML (a Haskell implementation
of the ML library) and an STM implementation of synchronisations
with choice (a de-centralised version of the Oracle algorithm [13]).

5.1 Methodology
All the benchmarks were carried out on the same 8-core Intel
Xeon E5310 (1.60GHz) machine with 4GB RAM, running Debian
GNU/Linux, kernel version “2.6.26-1-686-bigmem”.

The benchmarks were timed using the Criterion benchmark-
ing library by performing 100 iterations of each benchmark. Each
benchmark recording included all startup and shutdown costs (par-
ticularly crucial in a garbage-collected language), with iterations
set sufficiently high to make the fixed costs for an empty program
(µ = 5.227ms; 95% CI: 5.190ms, 5.287ms) immaterial.

All confidence intervals were calculated using a non-parametric
(i.e. without assumption of underlying distribution) bootstrap with
bias-corrected acceleration [5] using 100000 resamples.

5.2 Pairs of Communicators
To test the speed of channel communications in the various sys-
tems, we create a program with N pairs of communicators, where
each pair consists of a writer and a reader, with the former repeat-
edly communicating to the latter (100000 times). The run-time sys-
tem underlying all our systems use light-weight threads scheduled
flexibly (i.e. with migration) across the different processor cores.

It can be the case that having the writer and reader on different
cores, running without contention, is actually slower than having
them on the same core, continually being switched out for each
other. Due to the effects of scheduling and migration with small
numbers of pairs (low values of N ), we set N to be suitably high.
Our benchmarks were carried out with N = 100 to avoid such
problems.

The results are presented in table 1. It can be seen that the results
for the implementation of conjunction in CHP are approximately
a factor of four to six slower than those implementations without
choice (MVar, STM) and a factor of two slower than the fastest
implementation with choice (Sync).

This result shows that adding conjunction to existing systems
does not introduce a major factor difference for basic channel
communications; given that adding choice added a factor of two or
three, a further factor of two for conjunction seems an acceptable
parallel in exchange for the extra expressive power.

5.3 Conjunctive Pairs
To give an idea of the speed of conjunction itself, we compare it
to that of standard channel communications. A benchmark similar
to the one in the previous section was constructed, but each pair
of communicators were communicating on a conjunction of two
channels, instead of solely on one.

The results are presented in table 2. It can be seen that for CHP,
communicating on the conjunction of two channels is a factor of
three slower than communicating on a single channel; ideally, we

Type Mean 95% CI
Single 4.1625 4.1345 – 4.1927
Conjunction 16.6746 16.5818 – 16.9561

Table 2. Times (means and 95% confidence intervals) for 100 pairs
of writer and read processes communicating 10000 times on a pair
of channels in conjunction versus a single pair in CHP (seconds, to
4 d.p.)

might hope that this factor was less than two (the cost for the two
channel communications separately). The time is around one order
of magnitude worse than communicating on a single channel in the
fastest systems (see table 1).

6. Related Work
The concept of joining multiple actions into an atomic item is
present in Software Transactional Memory (STM) [7]. STM al-
lows transactions to be executed that either happen in their entirety
(without intermediate states being visible to other processes) or do
not happen at all. STM transactions only read from and write to
transactional variables; there is no synchronisation between pro-
cesses during a transaction, so the standard API for STM has only
a subset of the power of conjunction.

There has been work to build a transactional system where
the primitives are synchronisation events [4]. A transaction can
consist of a sequence of events, including choice between events,
and the events in a transaction only take place at the end of a
transaction, with all-or-nothing semantics. The transactional events
work is slightly more general than conjunction, but because of
this it lacks an efficient implementation (the implementation races
threads against each other, with the first thread to finish killing its
siblings).

7. Conclusions
This paper has introduced a conjunction operator that allows two
events to be synchronised on together, so that each event can only
occur with the other. These conjunctions can be combined with a
standard choice to permit choice between conjunctions. The algo-
rithm has been described, including extensions to support partial
events and/or priority between events.

This paper has not explored the language/library binding for
conjunction, because it is typically trivial; an AND operator or
function is added that takes synchronisation events as its argu-
ments, mirroring the design of the XOR operator in the given lan-
guage/library.

We have begun some preliminary work to modify the traces
model of the CSP process calculus [8, 10] to provide formal rea-
soning support for conjunction. A mapping to plain CSP is difficult
as it requires analysis of the whole system at once, and conjoined
events interact awkwardly with CSP’s hiding operator. However,
modifying the traces model itself is a more promising avenue of
investigation.

One benefit of the CSP programming model is that it can eas-
ily be transferred to distributed systems. Channels can easily be
“stretched” over the network to join two separate machines without
any modification to the original program. There is no obvious way
to implement conjunction in a distributed system – this is reserved
for future work.



References
[1] The Go programming language. http://golang.org/. Visited

March, 2010.
[2] N. C. C. Brown. Communicating Haskell Processes: Composable ex-

plicit concurrency using monads. In Communicating Process Archi-
tectures 2008, pages 67–83, Sept. 2008.

[3] N. C. C. Brown. Sticky platelet pipeline – finally tick-
less. http://chplib.wordpress.com/2010/01/25/
sticky-platelet-pipeline-finally-tickless/. Visited
March, 2010.

[4] K. Donnelly and M. Fluet. Transactional events. SIGPLAN Not., 41
(9):124–135, 2006. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1160074.1159821.

[5] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall/CRC, 1993.

[6] K. Fraser and T. Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2):5, 2007. ISSN 0734-2071. doi:
http://doi.acm.org/10.1145/1233307.1233309.

[7] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In PPoPP ’05, pages 48–60. ACM, 2005. ISBN
1-59593-080-9. doi: http://doi.acm.org/10.1145/1065944.1065952.

[8] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985. URL http://www.usingcsp.com/.

[9] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, Cambridge, England, 1999.

[10] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-
Hall, 1997. URL http://www.comlab.ox.ac.uk/people/bill.
roscoe/publications/68b.pdf.

[11] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock. A Lay-
ered Behavioural Model of Platelets. In Michael G. Hinchey, editor,
ICECCS-2006, pages 98–106, Stanford, California, Aug. 2006. IEEE.

[12] P. H. Welch and F. R. M. Barnes. Communicating mobile processes:
introducing occam-pi. In 25 Years of CSP, volume 3525 of Lecture
Notes in Computer Science, pages 175–210. Springer Verlag, 2005.
ISBN 3-540-25813-2. URL http://www.cs.kent.ac.uk/pubs/
2005/2162.

[13] P. H. Welch, F. R. M. Barnes, and F. A. C. Polack. Communicating
complex systems. In M. G. Hinchey, editor, Proceedings of the 11th
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS-2006), pages 107–117, Stanford, California, Au-
gust 2006. IEEE. URL http://www.cs.kent.ac.uk/pubs/2006/
2398. ISBN: 0-7695-2530-X.


